검색
검색 팝업 닫기

Ex) Article Title, Author, Keywords

Article

Research Paper

Journal of the Optical Society of Korea 2010; 14(1): 49-54

Published online March 25, 2010 https://doi.org/10.3807/JOSK.2010.14.1.049

Copyright © Optical Society of Korea.

Optical Coherence Tomography Based on a Continuous-wave Supercontinuum Seeded by Erbium-doped Fiber's Amplified Spontaneous Emission

Ju-Han Lee1, Eun-Joo Jung2, and Chang-Seok Kim3

1School of Electrical and Computer Engineering, University of Seoul; 2Nano-Photonics Research Center, Korea Photonics Technology Institute; 3Department of Cogno Mechatronics Engineering, Pusan National University

Received: November 16, 2009; Revised: February 17, 2010; Accepted: February 18, 2010

In this study, the use of a continuous-wave (CW) supercontinuum (SC) seeded by an erbium-doped fiber's amplified spontaneous emission (ASE) for optical-coherence tomography imaging is experimentally demonstrated. It was shown, by taking an in-depth image of a human tooth sample, that due to the smooth, flat spectrum and long-term stability of the proposed CW SC, it can be readily applied to the spectral-domain optical-coherence tomography system. The relative-intensity noise level and spectral bandwidth of the CW SC are also experimentally analyzed as a function of the ASE beam power.

Keywords: Biomedical optics, Broadband light sources, Optical coherence tomography, Fiber optics, Imaging,

OCIS codes: 170.3880; 060.2380

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
    CrossRef
  2. E. J. Jung, J. S. Park, M. Y. Jeong, C. S. Kim, T. J. Eom, B. A. Yu, S. Gee, J. Lee, and M. K. Kim, “Spectrallysampled OCT for sensitivity improvement from limited optical power,” Opt. Exp. 16, 17457-17467 (2008).
    CrossRef
  3. J. H. Kim and B. H. Lee, “Murine heart wall imaging with optical coherence tomography,” J. Opt. Soc. Korea 10, 42-47 (2006).
    CrossRef
  4. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 ${\mu}m$ using Er and Tm-doped fiber sources,” J. Biomed. Opt. 3, 76-79 (1998).
    CrossRef
  5. N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 ${\mu}m$,” Opt. Lett. 29, 2846-2848 (2004).
    CrossRef
  6. P. S. Westbrook, J. W. Nicholson, K. S. Feder, and A. D. Yablon, “Improved supercontinuum generation through UV processing of highly nonlinear fibers,” IEEE J. Lightwave Technol. 23, 13-18 (2005).
    CrossRef
  7. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
    CrossRef
  8. S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. Wadsworth, U. Bunting, and D. Kopf, “Ultrahigh resolution real time OCT imaging using a compat femtosecond Nd:Glass laser and nonlinear fiber,” Opt. Exp. 11, 3290-3297 (2003).
  9. Y. Wang, I. Tomov, J. S. Nelson, Z. Chen, H. Lim, and F. Wise, “Low-noise broadband light generation from optical fibers for use in high-resolution optical coherence tomography,” J. Opt. Soc. Am. A 22, 1492-1499 (2005).
    CrossRef
  10. S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density light source for fiber sensing purposes,” Meas. Sci. Technol. 17, 1014-1019 (2006).
    CrossRef
  11. M. Prabhu, N. S. Kim, and K. Ueda, “Ultra-broadband CW supercontinuum generation centered at 1483.4 nm from Brillouin/Raman fiber laser,” Jpn. J. Appl. Phys. 39, L291-L293 (2000).
    CrossRef
  12. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, “Continuouswave, high-power, Raman continuum generation in holey fibers,” Opt. Lett. 28, 1353-1355 (2003).
    CrossRef
  13. S. M. Kobtsev and S. V. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Exp. 13, 6912-6918 (2005).
    CrossRef
  14. A. K. Abeeluck, C. Headley, and C. G. Jorgensen, “Highpower supercontinuum generation in highly nonlinear dispersion- shifted fibers by use of a continuous-wave Raman fiber laser,” Opt. Lett. 29, 2163-2165 (2004).
    CrossRef
  15. J. H. Lee, Y. Takushima, and K. Kikuchi, “Continuouswave supercontinuum laser based on an erbium-doped fiber ring cavity incorporating a highly nonlinear fiber,” Opt. Lett. 30, 2599-2602 (2005).
    CrossRef
  16. C. J. S. de Matos, S. V. Popov, and J. R. Taylor, “Temporal and noise characteristics of continuous-wave pumped continumm generation in holey fibers around 1300 nm,” Appl. Phys. Lett. 85, 2706-2708 (2004).
    CrossRef
  17. J. H. Lee, Y.-G. Han, and S. B. Lee, “Experimental study on seed light source coherence dependence of continuouswave supercontinuum performance,” Opt. Exp. 14, 3443-3452 (2006).
    CrossRef
  18. A. K. Abeeluck and C. Headley, “Supercontiuum growth in a highly nonlinear fiber with a low-coherence semiconductor laser diode,” Appl. Phys. Lett. 85, 4863-4865 (2004).
    CrossRef
  19. P. A. Champert, V. Couderc, and A. Barthelemy, “1.5-2.0 ${\mu}m$ multiwatt continuum generation in dispersion-shifted fiber by use of high-power continuous-wave fiber source,” IEEE Photon. Technol. Lett. 16, 2445-2447 (2004).
    CrossRef
  20. P. L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source,” Opt. Exp. 12, 5287-5295 (2004).
    CrossRef
  21. C. S. Kim and J. U. Kang, “Multi-wavelength switching of Raman fiber ring laser incorporating composite PMF Lyot-Sagnac filter,” Appl. Opt. 43, 3151-3157 (2004).
    CrossRef
  22. J. H. Lee, Y.-M. Chang, Y.-G. Han, S. B. Lee, and H. Chung, “Fully reconfigurable photonic microwave transversal filter based on digital micromirror device and continuous wave, incoherent supercontinuum source,” Appl. Opt. 46, 5158-5167 (2007).
    CrossRef
  23. J. H. Lee, K. Lee, Y.-G. Han, S. B. Lee, and C. H. Kim, “Single, depolarized, CW supercontinuum-based wavelength division multiplexed passive optical network architecture with C-band OLT, L-band ONU, and U-band monitoring,” IEEE J. Lightwave Technol. 26, 2891-2897 (2007).
  24. N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 ${\mu}m$,” Opt. Lett. 29, 2846-2848 (2004).
    CrossRef
  25. D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an SSG-DBR laser,” Proc. SPIE 5690, 101-113 (2005).
    CrossRef
  26. A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235 (2004).
    CrossRef
  27. U. Sharma, E. W. Chang, and S. H. Yun, “Long wavelength optical coherence tomography at 1.7 ${\mu}m$ for enhanced imaging depth,” Opt. Exp. 16, 19712-19723 (2008).
    CrossRef
  28. D. Fried, R. E. Glena, J. D. B. Featherstone, and W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” Appl. Opt. 34, 1278-1285 (1995).
    CrossRef
  29. S. Moon and D. Y. Kim, “Normalization detection scheme for high-speed optical frequency-domain imaging and reflectometry,” Opt. Exp. 15, 15129-15146 (2007).
    CrossRef
  30. J. S. Lee, C. H. Chung, and D. J. Digiovanni, “Spectrumsliced fiber amplifier light source for multi-channel WDM application,” IEEE. Photon. Technol. Lett. 5, 1458-1461 (1998).
  31. C. R. S. Fludger, V. Handerek, and R. J. Mears, “Pump to signal RIN transfer in Raman fiber amplifiers,” IEEE J. Lightwave Technol. 19, 1140-1148 (2001).
    CrossRef
  32. K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Select. Topics Quantum Electron. 7, 328-333 (2001).
    CrossRef
  33. H. S. Lee, E. J. Jung, M. Y. Jeong, and C. S. Kim, “Broadband wavelength-swept Raman laser for Fourier-domain mode locked swept-source OCT,” J. Opt. Soc. Korea 13, 316-320 (2009).
    CrossRef
  34. D. D. D. Fonseca, B. B. C. Kyoyoku, A. M. A. Maia, and A. S. L. Gomes, “In vitro imaging of remaining dentin and pulp chamber by optical coherence tomography: comparison between 850 and 1280 nm,” J. Biomed. Opt. 14, 024009-1~024009-5 (2009).
    CrossRef
  35. V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, M. Yamanari, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, “In-vivo three dimensional Fourier-domain optical coherence tomography for soft and hard oral tissue measurements,” in Proc. Biomedical Optics Topical Meeting (BIOMED) (Fort Lauderdale, FL, USA, Mar. 2006), paper WE3.
  36. F. I. Feldchtein, G. V. Gelikonov, V. M. Gelikonov, R. R. Iksanov, R. V. Kuranov, A. M. Sergeev, N. D. Gladkova, M. N. Ourutina, J. A. Warren, and D. H. Reitze, “In vivo OCT imaging of hard and soft tissue of the oral cavity,” Opt. Exp. 3, 239-250 (1998).
    CrossRef
  37. S. S. Manesh, C. L. Darling, and D. Fried, “Polarizationsensitive optical coherence tomography for the nondestructive assessment of the remineralization of dentin,” J. Biomed. Opt. 14, 044002-1~044002-6 (2009).
    CrossRef