D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
E. J. Jung, J. S. Park, M. Y. Jeong, C. S. Kim, T. J. Eom, B. A. Yu, S. Gee, J. Lee, and M. K. Kim, “Spectrallysampled OCT for sensitivity improvement from limited optical power,” Opt. Exp. 16, 17457-17467 (2008).
J. H. Kim and B. H. Lee, “Murine heart wall imaging with optical coherence tomography,” J. Opt. Soc. Korea 10, 42-47 (2006).
E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 ${\mu}m$ using Er and Tm-doped fiber sources,” J. Biomed. Opt. 3, 76-79 (1998).
N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 ${\mu}m$,” Opt. Lett. 29, 2846-2848 (2004).
P. S. Westbrook, J. W. Nicholson, K. S. Feder, and A. D. Yablon, “Improved supercontinuum generation through UV processing of highly nonlinear fibers,” IEEE J. Lightwave Technol. 23, 13-18 (2005).
K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. Wadsworth, U. Bunting, and D. Kopf, “Ultrahigh resolution real time OCT imaging using a compat femtosecond Nd:Glass laser and nonlinear fiber,” Opt. Exp. 11, 3290-3297 (2003).
Y. Wang, I. Tomov, J. S. Nelson, Z. Chen, H. Lim, and F. Wise, “Low-noise broadband light generation from optical fibers for use in high-resolution optical coherence tomography,” J. Opt. Soc. Am. A 22, 1492-1499 (2005).
S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density light source for fiber sensing purposes,” Meas. Sci. Technol. 17, 1014-1019 (2006).
M. Prabhu, N. S. Kim, and K. Ueda, “Ultra-broadband CW supercontinuum generation centered at 1483.4 nm from Brillouin/Raman fiber laser,” Jpn. J. Appl. Phys. 39, L291-L293 (2000).
A. V. Avdokhin, S. V. Popov, and J. R. Taylor, “Continuouswave, high-power, Raman continuum generation in holey fibers,” Opt. Lett. 28, 1353-1355 (2003).
S. M. Kobtsev and S. V. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Exp. 13, 6912-6918 (2005).
A. K. Abeeluck, C. Headley, and C. G. Jorgensen, “Highpower supercontinuum generation in highly nonlinear dispersion- shifted fibers by use of a continuous-wave Raman fiber laser,” Opt. Lett. 29, 2163-2165 (2004).
J. H. Lee, Y. Takushima, and K. Kikuchi, “Continuouswave supercontinuum laser based on an erbium-doped fiber ring cavity incorporating a highly nonlinear fiber,” Opt. Lett. 30, 2599-2602 (2005).
C. J. S. de Matos, S. V. Popov, and J. R. Taylor, “Temporal and noise characteristics of continuous-wave pumped continumm generation in holey fibers around 1300 nm,” Appl. Phys. Lett. 85, 2706-2708 (2004).
J. H. Lee, Y.-G. Han, and S. B. Lee, “Experimental study on seed light source coherence dependence of continuouswave supercontinuum performance,” Opt. Exp. 14, 3443-3452 (2006).
A. K. Abeeluck and C. Headley, “Supercontiuum growth in a highly nonlinear fiber with a low-coherence semiconductor laser diode,” Appl. Phys. Lett. 85, 4863-4865 (2004).
P. A. Champert, V. Couderc, and A. Barthelemy, “1.5-2.0 ${\mu}m$ multiwatt continuum generation in dispersion-shifted fiber by use of high-power continuous-wave fiber source,” IEEE Photon. Technol. Lett. 16, 2445-2447 (2004).
P. L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source,” Opt. Exp. 12, 5287-5295 (2004).
C. S. Kim and J. U. Kang, “Multi-wavelength switching of Raman fiber ring laser incorporating composite PMF Lyot-Sagnac filter,” Appl. Opt. 43, 3151-3157 (2004).
J. H. Lee, Y.-M. Chang, Y.-G. Han, S. B. Lee, and H. Chung, “Fully reconfigurable photonic microwave transversal filter based on digital micromirror device and continuous wave, incoherent supercontinuum source,” Appl. Opt. 46, 5158-5167 (2007).
J. H. Lee, K. Lee, Y.-G. Han, S. B. Lee, and C. H. Kim, “Single, depolarized, CW supercontinuum-based wavelength division multiplexed passive optical network architecture with C-band OLT, L-band ONU, and U-band monitoring,” IEEE J. Lightwave Technol. 26, 2891-2897 (2007).
N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 ${\mu}m$,” Opt. Lett. 29, 2846-2848 (2004).
D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an SSG-DBR laser,” Proc. SPIE 5690, 101-113 (2005).
A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235 (2004).
U. Sharma, E. W. Chang, and S. H. Yun, “Long wavelength optical coherence tomography at 1.7 ${\mu}m$ for enhanced imaging depth,” Opt. Exp. 16, 19712-19723 (2008).
D. Fried, R. E. Glena, J. D. B. Featherstone, and W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” Appl. Opt. 34, 1278-1285 (1995).
S. Moon and D. Y. Kim, “Normalization detection scheme for high-speed optical frequency-domain imaging and reflectometry,” Opt. Exp. 15, 15129-15146 (2007).
J. S. Lee, C. H. Chung, and D. J. Digiovanni, “Spectrumsliced fiber amplifier light source for multi-channel WDM application,” IEEE. Photon. Technol. Lett. 5, 1458-1461 (1998).
C. R. S. Fludger, V. Handerek, and R. J. Mears, “Pump to signal RIN transfer in Raman fiber amplifiers,” IEEE J. Lightwave Technol. 19, 1140-1148 (2001).
K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Select. Topics Quantum Electron. 7, 328-333 (2001).
H. S. Lee, E. J. Jung, M. Y. Jeong, and C. S. Kim, “Broadband wavelength-swept Raman laser for Fourier-domain mode locked swept-source OCT,” J. Opt. Soc. Korea 13, 316-320 (2009).
D. D. D. Fonseca, B. B. C. Kyoyoku, A. M. A. Maia, and A. S. L. Gomes, “In vitro imaging of remaining dentin and pulp chamber by optical coherence tomography: comparison between 850 and 1280 nm,” J. Biomed. Opt. 14, 024009-1~024009-5 (2009).
V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, M. Yamanari, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, “In-vivo three dimensional Fourier-domain optical coherence tomography for soft and hard oral tissue measurements,” in Proc. Biomedical Optics Topical Meeting (BIOMED) (Fort Lauderdale, FL, USA, Mar. 2006), paper WE3.
F. I. Feldchtein, G. V. Gelikonov, V. M. Gelikonov, R. R. Iksanov, R. V. Kuranov, A. M. Sergeev, N. D. Gladkova, M. N. Ourutina, J. A. Warren, and D. H. Reitze, “In vivo OCT imaging of hard and soft tissue of the oral cavity,” Opt. Exp. 3, 239-250 (1998).
S. S. Manesh, C. L. Darling, and D. Fried, “Polarizationsensitive optical coherence tomography for the nondestructive assessment of the remineralization of dentin,” J. Biomed. Opt. 14, 044002-1~044002-6 (2009).